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ABSTRACT

The effect of the wall on the motion of elongated aerosol

particles was calculated on the basis of the(powerful) slender

body theory for a quiet and flowing medium. The cases treated

were those of cylindrical particles moving in a quiet environ-

ment or a Couette or a Poiseuille flow near plannar surfaces with

various inclinations to the horizontal.

Experiments of trajectory photographing were performed in a liquid-

tank under creeping flow conditions and typical (aerosol) Reynolds

numbers whereby very good correspondence with computations was

obtained.

The Brownian diffusion of (very small) cylindrical or discoidal

aerosol particles was also studied while being based on Brenners'

formal structure. To evaluate the signficant orientation density

function, the (mid-diameter)rotational diffusion coefficient of the

particles was calculated by a statistical-mechanical method. The

values of the coefficients were found to be larger than those computed

on the basis of continuum theory by a factor of about 30.

The typical diffusion situation of deposition on a plane within a quiet

air was treated.
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INTRODUCTION

During the past several years a series of studies on the transport

mechanics of non-spherical aerosol particles was carried out mostly

with the support of the European Research Office, U.S. Army.These studies

were summarized in the final reports:

The Dynamics of Nonspherical Particles

I. Controlled Generation of Nonspherical Aerosols and Methods

for Their Size, Concentration and Electric Size Measurement (Contract

DAJA 37-72-3875; 1974).

II. Mobility in Non-Orienting Fields (Contract DAJA 37-74-C-

1208; 1975).

III. Mobiiity and Deposition in Still Air (Contract DAERO-75-G-021;

1977).

IV. Deposition from Flow (Contract DfERO-76-G-014; 1978)

and in the parallel journal publications:

I. "On the stochastic Motion of Nonspherical Aerosol Particles.l. The

Aerodynamic Radius Concept" by Isaiah Gallily and Aaron Hi-Cohen, J. Colloid

Interface Sdl. 56, 443-59 (1976)

2. " ,'I. The Overall Drift Angle in Sedimentation", by

Matitia A. Weiss, Aaron-Hi Cohen and Isaiah Gallily, J. Aerosol Sci. 9,

527-41 (1978).

3. "On the Orderly Nature of the Motion of Nonspherlcal Aerosol

Particles. I. Deposition from a Laminar Flow." by Isaiah Gallily and

Alferd D. Eisner, J. Colloid interface ScI.68, 326-37 (1979).

4.'
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Likewise, they were reported in the following articles:

4, "On the Orderly Nature of the Motion of Nonspherical Aerosol

Particles. II. Inertial Collision between a Spherical Large Drop-

let and an Axially Symmetrical Elongated Particle" by Isaiah Gallily

and Aaron-Hi Cohe, J. Colloid Interface Sci. 68, 338-56 (1979).

5. " ,11. , Further Results," by Isaiah Gallily and

Aaron Hi-Cohen, ibid. 71, 628-30 (1979).

The efforts invested in all of these investigations culminated in the

establishment of a method of claculation of the gravitational sedimentation

in still and laminarily flowing gas, and of the inertial impaction on

various surfaces of axi-symmetrical particles such as cylinders and

disks. The method has been ellaborated in the (above) publications 1-5 and

partially checked by experiments; however, it is far from being complete.

One problem in tha analysis of our particles' transfer phenomena which

has not been considered is the effect of the surface exposed to the aerosol on

the collection process itself. The effect, related here only to the motion

of the particles in the adjoining gas layer, is due to

a. The fluiddynamic interaction between a particle approaching a

surface and the latter which essentially stems from the change of the flow field

due to the emergence of an additional boundary condition.

b. The presence of long (electrostatic) or short (Van der Waals) surface

particle forces.

Another untreated problem concerns the stochastic diffusional turbulent and/or

Brownian movement of the particles.
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It is needless to stress the significance of the first problem which has

been treated scarcely for the case of spherical particles by Brenner(]),

Gallily and Mahrer (2) and others and has been almost untouched in the

case of the nonspherical ones.

In most studies on the orderly motion of any particle, expressed by the

equation of translation

yr 4 / d- 4 Fe,: + F

and rotation

the fluiddynamic operating force F F and torque LF have been calculated

or the substitute situation in which the particle is infinitely far from

th, (collecting)surface. This has been obviously a simplification whose

justification was checked in the calculation of FF and LF for some spheri-

cal cases (1,2). For the nonspherlcal case, it has not been studied at all.

The importance of the second problem is self evident for sufficiently

turbulent field or very small particles for which the fluctuating part of the

force F F' viz. F F - (F7 ) , can not be neglected in comparison with

the mean one (FF).

....................................... ...........
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AIM OF STUDY

In view of the above review of the state of research, it was thought

worthwhile to investigate:

1. The effect of the collecting surface on the motion of nonsphe-

rical particles near, and their deposition on it, and, independently,

2. The diffusion of nonspherical particles.

These two problems seemed immediately too formidable for a general

treatment; thus their study was restricted in the first subject to the

case of cylindrical particles much larger than the mean free path I of

the medium's molecules ( K < 1 ), and a planar solid wall, and

in the second subject to the Brownian diffusion of cylindrical and discoidal

particles much smaller than ( k < ) < Cylindrical and

discoidal forms respectively serve as idealized model shapes, of the

real (harmful)asbestos or other significant fibrous particles and of

latelet-like ones. So, the restriction to the above morphology is not

vcry limiting in significance.

A. THE WALL EFFECT

I. Theoretical

1. Method

a. General

Here we preferred to use slender body theory rather than the (limited)

method of Wakiya which is based on Fourier analysis technique (3).
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The slender body theory method is much more general than the latter;

it can be employed in situations where the (aerosol) particle is even

farfrom walls withi a better advantage than that obtained by being based

on the much used Oberbeck's (4) and Jeffery's (5) equations. In other

words, it is very useful.

The method is apt for the treatment of the motion of particleswhose
4

characteristic size -r Tr- \Fr7 i ) is much larger

than the mean free path I of the medium's molecules >-. -

and whose characteristic Reynolds number Re is much smaller than

unity. In fhat case, the equations of fluid motion to be solved are

f' v7v(r) - = 0

3nd

V J ,' = [4]

The theory, developed by Batchelor (6) ,Chwang and Wu(7), Blake (8),

Cox (9) and others, deals with elongated particles in which the ratio IR

between the characteristic cross-sectional radius b and the semi-length 1

is = j< ,the change of the local equivalent cross-sectional
L

For symbols see NOMENCLATURE

A

.
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radius , is small compared with -,./& , and the local radius

of curvature is much greater than - (Fig. 1).

p'

X2

X1

Fig. !. A slender body (not necessarily a straight cylinder);

coordinates used in the analysis.

Under these conditions, the disturbance velocity v (r) produced by the

moving particle is given by the multipole expansion

9.,

e !1



Or) pri" CilIi)~j rr,4

+ ¢ -') 4 C,- ) dr' * .+ - fS]

where, w;th the Einstein's convention adhered to, 4' (') (Stokeslet),

(doublet), ( r") etc. are

(imaginary) poles causing the disturbances %L j (r, r') etc.; the latter

are actually the proper Green functions (APPENDIX 1).

The calculation of the (critically required ) fluiddynamic force F;:

and torque L 1, appearing in Eqs. [I] and [2] can be performed

once the Stokelet Cr') distribution is known since (Fig.])

r = f .f s) di [6]
-L

and

L

F= if(s) ds [7)
-I.

The finding of 4 (v-') cannot be carried out by the solution of the

full Eq. f51 with the proper boundary conditions on the particle

(v (r)- U (r) t U (r) + C x X for r - s + b) and

on the wall (v cv) = 0 ) . Thus, one uses as an approximation for r >>f,

(Fig.l) an "outer expansion" in which

I.I

-' " - . . .. . ., .,, :, t ._, ,' , ," . ... ' _
. .. . . .. .. . . .. ... . . -- --t ' - _ 

,
..,. t' : - . ¢ , ..... . ,. .



L

vjK)'r Lk~ (rv1~o- 8]
-I.

only, and for I (for which the disturbance can be assumed to

evolve from a portion of an infinite straight cylinder of radius

an "inner expansion" (6)

r- C's (r i< cA - s)1 -4- u 1 ( s) l

and

VL'C = C'(r) ti.m- + 4~ 1''()+L)Ls 10)

where 1' , L' 2 . , 3 ) respectively stand for the particle-locked

local coordinates X11 , x2.1 , x3 l , are quantities

affected by the wall and k , Kj are constants defined by the

geometry of the cross-section at e' (Fig. 1). This "inner expansion"

can be also written in the vectorial form fit for any coordinate system

where 14 , C, Tr, I, ' are defined In APPENDIX 1.

The two approximations are matched In a region in which they are both

assumed to hold ( < T<< f ) , and the relevant constants so derived.

In the case of the "outer expansion", one can write

, !.



- -( r ) = U , .0 -, " + 9 ( m ' [121

where U., r, r', has singularities on the particles axis

and (4 r , r'. is non-singular when (

b. Straight Body

In this case Eq. [8] is integrated by Batchelor's approximation to [11] (G)

which gives

+ - +.A. + 1.- [13]

I",t and .. being defined in APPENDIX I , :[ 1 6(2 / ) -

and X = ('C,- / & ) . Now, matching the coefficients of the

(singular) (1? - part in[11] and [13] one gets

C(,) = ((s) , (14]

and, doing the same for the non-singular part,

where IC I" +' I' and W0 TT.? .

an.

IL'
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At this stage i. Cs) can be numerically calculated from [15]

by dividing our particles' axis into N equal parts, to each of which is

associated an average (s () , and performing the integration of

un d , I respectively appearing in
,~ ~ ~ ~ i - r an i

JA. and R ; so, for the two-dimensional case of particles' motion,

one obtains 2 N equations for 2 N unknowns while for the three-

dimensional case one obtains 3 N equations for 3 N unknowns.

According to Batchelor (6), it is possible to use here a quick iterative

method by writing

C (. S) + -f. (S + [(S)

i.The Wall Effect

Dealing with a cylindrical particle undergoing a translational

and rotational motion near a planar solid wall (Fig. 2) and statisfying

.

'-A
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P -

WLL

Fig.2. A slender cylinder-planar solid wall system, coordinates
used in analysis,

the no-slip condition on all boundaries, one has to Introduce on the

reflected Image of the particles' axis a line-distribution of point

forces, -4,(x) ,a line distribution of doublets,

and a line distribution of quadrulies, - 4k'f; (X) (8)
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In this case

' 7= 1j r - 1 r{ I - r , I

and

36._ nIr- _ Fm 1, - 3 r r:.r [18]

where a is 1 or 2 and , 1 I 1,2,3 respectively

ii. Motion.withina Flow

Similarly to the "outer expansion" In a quiet medium, it Is possible

to write in this case for / '< I

I

(rC) U~j (vv)Oltr [9)

-L

In which V'Or) =Vr) - V*'r) and vir) is the

undisturbed flow ((v r) ---+ V(r) zs , o- ) ; the

"Inner expansion" can be expressed by an equation similar to [Ii)

but where is now affected by the

flow.
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Thus, after performing the necessary matching between [19land the

modified [if,, one gets like r.15

1( 1 4 M.# IM 8 + 3 ( 6

Tr" M''FS +' "A"-. (S, [20]

in which U' (6', U (I^, - v ,[s U('" Is defined by

vr) -- U(r) for r -- +b ,and all other symbols are

as marked above.

Expanding v*(r) on the (straight) particles' axis in the

form

y.( ) .- x + .-" [l)

and putting x =x (iI being CAOO and i being sinO ),

one has for U' (S)

U [) Ui(g)- =,X V, S! - x [22]

where IBL --- 6I, cj. j -:.
1 . Is the rotational velocity

of the particle and V is its translational velocity.

.



- 14 -

2. Computational Procedure

The trajections of our particle were derived from the solution of Eqs. :1:

and "2' on the specific assumptions that the particles are:

i. homogeneously dense

and

ii. affected only by the gravitational force mg9, the fluiddynamic

force FF (Eq. '6 ) anidthe fluiddynamic torque LF.

At first were treated two-dimensional cases, in which particles axis

stays in a plane containing ; then we considered three dimensional

situations.

For the two-dimensional cases, where the [l] and [2] turn into

w dw?-dt + [23L2

and (since co, G) 2 = O)

_T L [24]
I.. C) = [21.]

we employed:

i. A quick technique based on Eq. [16J

and

ii An elaborate technique described in APPENDIX 1.

The computation itself was performed (on the Hebrew University CYBER 74 CDC com-

puter) by the use of a fourth-order Runge -Kutta method; the time intervals

were from 5 10- 4 to 3 • 1O-4  second, depending on the (decreasing)

gap between the particle and the wall.
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II. Experimental

The experiments were essentially intnded to check the calculations in

their significant points. Thus, one could in principle either:

1. Determine the force FF and torque LF from measured trajectories and

orientations and compare with theory

or

2. Determine the whole trajectories of the particles with their orienta-

tions and test against computations.

At any case it was necessary to measure particlev' location and

orientation as a function of time; so, since the observation of small cylind-

rical aerosol particles is complicated by light scattering phenomena

(10), it was thought worthwhile to use large (macro) particles which move in oil

in a creeping motion ( Re < ± too.

1. Method

In essence and without loss of generality, our experiments were carried

photographing
out by/a two-dimensional motion of a homogeneously dense cylindrical body

falling under the action of gravitation in an oil medium. Here, out of the

above two alternatives, we chose the latter which Is more exact than the

former as it does not involve differentiation of location and velocity data

curves.

2. Apparatus

The apparatus designed and constructed for the above purpose (Fig. 3,a

and b) consisted of:

low
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y

X

n

£I F

C

K

b

Fig. 3. The experimental apparatus (achematical) (a) A, Tank;

B, plate (wall);C, release device; D, cylinder; E, movie-camera; F, platform;

G, scale, H, mirror. (b) K, cylinders' holding part of release device;

L,, sliding rod and guide, respectively, a1 , a2 pivote rods.

at
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A tank A containing silicone oil in which was suspended a polished steel

plate B, a device C to release a metallic cylinder C Into the liquid, a

movie-camera E and light source for the trajectory photographing, a moving

platform F for the camera, and a scale G -mirror - light source combination

fCor locating the particle.

The tank was made of Plexiglas in the (inner) dimensions of 50 cm height,

50 cm. breadth and 3 cm. width and was kept vertical by Its own weight.

The liquid (F 111/10000 dimethyl silicone fluid, ICI, England) had a

(nominal)viscosity 1A of 10 4 centistokes or about 100 poise dynamic

viscosity at 250 C with a temperature coefficient of 0.02%. /°C, and a

density of 0.968 g. cm- 3 at 250 C. This ]i quid was satisfactorily Newtonian

as tested before each experiments by measuring at various shear rates

vl/ a xj by the settling velocity of various sized Stokesian steel

balls. The cylinder used as a tested particle had a radius b of 0.0075 cm,

a semi-length I of 1.5 cm. and a density of 7.780 g. cm-3 . It was intro-

duced into the liquid by a slow sliding movement in the groove of the devices'

edge K (Fig. 3 b) and along the middle (vertical) line of the plate

(wall). The camera was a Bolex H 16 Reflex movie instrument (Baillard,

Switgerland) equipped with a 1: 18 lens.

A



- 18 -

3. Procedure

The viscosity tL of the liquid was determined before every run as

described above; it was found to be constant, within the experimental

error, at the value of 112 + 2 poise for 16.4 0 C. The temperature of

the oil, measured at various locations in the tank, was constant to a

degree of 0.020 C, which amounted to a viscosity change of 0.02 poise.

The trajectory photographing was performed while keeping the center of

the falling cylinder on the optical axis of the camera as well as

possible. The reading of position and orientation of the particles image on

the movie film was carried out with a Nikon 6CT2 profile projector (Nikon,

Japan) to a (nominal) accuracy of + 0.001 mm.

Here it should be pointed out about the critical requirement of two-

dimensionality to which a self-restriction was imposed. Due to the cylindri-

cal rod release-operatlonthere was always a chance that the particle will

not move with its axis in the plane of 9 . So, in every experiment, the

flm image of the falling rod was aposteriori checked against the expected

value deduced from the actual size and orientation of the body, andwhen

a deviation occuredthis run was discarded.

III. Results

As the checking experiments had to be restricted to a liquid medium

and macro particles, the calculations were confined to that situation too.

Dealing with physical cases which can be analyzed by continuous, classical

fluiddynamic methods, this did not matter as long as creeping motion

conditions ( Re < < iP K' <4 1 ) still prevailed and the liquid

specific effects associated with the acceleration of the particles, viz. the
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added mass and moments of inertia and the Basset term influence (11),

could be neglected.

Th2 cases selected for computation were chosen to be a two-dimensional

motion in a still environment near:

i. A vertical wall (rigs. 5 through 8),

ii. An horizontal wall (Figs. 9 through 11),

iii. An inclined wall (Figs. 12 through 19)

and a two-dimensional motion within:

i. A two-dimensional Couette flow over an horizontat wall (Fig. 20)

ii. A two-dimensional Poise±ili flow through an horizontal channel

(Fig. 21).

All of these cases simulate real situations. Thus, for example, if the

particles are small enough, then any corrugated surface can be represented

by inter-connected plan ar portions of various inclinations to the horizontal;

likewise, a general laminar field can be approximated by a series of inter-

;,djoining Couette flows. The restriction to two-dimensional motion which

is relaxed latter on in a further study (not reported here) is not serious

since in many instances such a situation is indicative enough of the physical

oc'urences.

The distances and angles employed in the calculations are brought out

in Fig. 4 (the unit of distance is always the semi-length 1). Thus the

undisturbed Couette flow was expressed by

v i Cx,) = [, D, [25]

A.
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where * is the (constant) velocity gradient, while the (undisturbed)

Poiseuille flow was given by

V. (x, = -26-

where ; is a (flow) constant and a is the half width of the channel.

The typical results shown here are presented in terms of the (operationa-

lly) important drift displacements and linear velocities and the

intuition-assisting rotational velocities and particle orientation.

9

a t X1/
/ XI

Fig. 4. A slender body near a wall. Distances

and angles used in calculations.

........... I .....
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A Quiet Medium

L 1.30

10z 1.20

D 2

5 1.10

V 10 15 20 10

Fig. 5. Drift displacement and orientation of a cylinder

near a vertical wall as a function of time.

16 L . e= 10 ( 0 = T/2- 9 ) ;~ I=1.5 cm;

b =0.075 cm. f,= 7.780 g. cm-3 ; i.. 100 poise;

&,experimental; - theoretical

2.0 A0 3 05

Fig. 6. Drift displacement and orientation of a cylinder near a

vertical wall as a function of Lime. Same parameters as

of Fig. 5 except for A. Dz 1 .5 1; -0 890. B: e=21 ,

A
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30

0

10 20 30 40 50

Fig. 7. Orientation and angular velocity of a cylinder near

a vertical wall as a function of time, for cases

A,B of Fig. 6.

2V

0

A

20 30 30 40 50
ULser)

Fig. 8.Vertical (V) and horizonta'(V 2  velocities (in 1/sec)

of a cylinder near a vertical wail for cases A and B of

Fig. 6.

-Ai1
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0.3

0.2 9.=O.6

0 : 0.0

0.1
10.0 7.5 5.0 2.5

D

Fig. 9. Vertical velocity of a cylinder falling towards

an horizontal plane as a function of D0 and for

various initial orientations 1e, (in ritds).

Same cylinder's and liquids properties as of Fig.5.

D,,, 10 L

3.8-0=.

~3.6 .7 =0.6

8--1.2

3.2 9:0.3

10.0 7.0 5.0 2.5
D

Fig. 10. Drift (horizontal) velocity of a cylinder falling towards

an horizontal plane for various initial orientations 0.

(in rods). Same cylinder's and liquid's properties as of Fig.5.

I>O- 10 1.
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1 1.5

* D=5

_2 i.o

0.0 0.3 0.6 0.9 .2 1.5

Ograd)

fig. 11. Angular velocity of a cylinder falling towards an horizontal

plane for various initial orientations (in rods) at M,,

1 I0 1, 5 1. Same cylinders' and liquids properties as of Fig.5.

10 01 01 fg 01010

M 0to 10 0 10

4 1 2 01 2

A B C D 32 E

Fig. 12. Time history of a cylinder failing towards a plane inclined to

the horizontal at angles: A-15 0 , B-300 , C-450 , D-60°,E-75°;

initial orientation - vertical; MD,0 a 10 1. Numbers near

positions indicate elapsed time in seconds. Same cylinder' and

mediums properties as of Fig. 5.

i '
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10 - 0 - 0 -_ 0 -_ 0 - 0

20- 0 20- 20- 20

Di 30- 30-- 30- 30- 0-

40- 40 - 40- 40- 10-

45 - 4 - ,4 5--- 45----
so s0o

0.75

00D

Fig. 13. rift isplacmn of a cylinder falling towards an inclined ae

pl.Same parameter s n odtos as of Fig. 12.ecp o oizna nta
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E

D2D

1020 30 40

Fig. 15. Drift displacement of a cylinder falling towards an inclined

plane. Same parameters and conditions as of Fig. 13.

3.4-

3.0-~m A
B

22-

5 10 15 20 25

t (see)

Fig. 16. Vertical velocity of a cylInder falling towards an Inclined

plane. Same parameters and conditions as of Fig. 12.
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8#

II

/ /,

I -

o I0 50 I0O

Fig. 17. Drift (horizontal) velocity of a cylinder falling towards an

inclined plane. Same parameters and conditions as of Fig.13.

(

lo 
E0

xE

3

1 so 30 40

1 (sec)

Fig. 18. Angular velocity of a cylinder falling towards an inclined

plane. Same parameters and conditions as of Fig. 12. (DA

reaches a minimum Qt the point P).

ii
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35B

10 20 30 40 50

t (se,)

Fig. 19. Angular velocity of a cylinder falling towards an inclined

plane. Same parameters and conditions as of Fig. 13. (Dz

reaches a minimum at the point P.).

Motion within a Flow

so
A
a

32-
15- •

C 2 A _

1 -24

B D

D -4

- 2

0 0 3o 080 40 50 0 80 0

tsee

Fig. 20. Change with time of the vertical velocity, A (in I/sec),angular

velocity B (in rQds/sec), distance from the wall C (In 1 ) , and

orientation angleD(in rods) of a cylinder within a Couette flow.

.,,z =20 1.
Same cylinders and liquids properties as of Fig. 5.

- .. .,t-. - .--- -
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80 40 1

~A

104

D

S to

0

Fig. 21. The vertical velocity A (in I/sec), angular velocity B

(in rods/sec), distance from the wall C (inl), and orientation

angle D (in rods) as a function of time. Medium-air of

1.718 X 10- poise; particle - 1 20p'- ; b 0.5 I 1

e =2.23 g. cm-3 ; channels half with a - 0.5 cm;

k = 0.15 (1.sec) -

LI
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IV. Discussion

The results shown in the above figures should be discussed while keeping

in mind the behaviour of a cylinder under creeping motion conditions iir an

unbounded (far from walls) fluid. In the latter case, an homogeneously dense

cylinder which settles down in an external field devoid of orienting forces

moves with a neutral stability, viz, a fixed orientation angle (12). In our

case, however, the cylinder is definitely subjected to a torque.

Vertical Wall; Still Medium

Here one can observe:

i. A continuous change of the orientation angle a caused by the wall-

created torque,

ii. A continuous development of a drift and an increase of the displa-

cement D 2.

It turns out that the sign of the torque depends on the angle e9 ;for every

initial distance of the particle from the wall there exists a critical angle e-

such that

L F< 0 when liI > 9

L, 0 when 16i1< o9

and

Lr 0 when 181=

The correspondence between theory and experiments depicted in Figs. 5 through 7

is really goad, which produces a confidence In our calculatlonal method.
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Horizontal Wall; Still Medium

Here particles motion is always two-dimensional. Its characteristics are-

i. A continuous decrease of the sedimentation velocity, V1 , as the

plane is apprnached,

ii. An enhanced wa!1 influence for small 6,

iii. A negligigble effect for large 0,, > O-ki

iv. An increased value and sensitivity to C, of the angular velocity

as the particle-plane gap is reduced,

v. A constant drift velocity, V 2 , till very small distances from

the plne.

It is interesting to compare these results with those of a spherical particle-

horizontal wall situation(2) where a similar behaviour is observed.

Inclined Wall; Still Medium; Two-dimensional Situation

From the results for the inclined wall it is seen that:

i. In the case of a vertical initial orientation, the torque is

positive, which will cause the cylinder to drift from right to the left (Fig.12).

ii. In the case of an horizontal in-tial orientation, the torque is

negative but, nevertheless,the cylinder will drift in the former direction too

(Fig. 13).

iii. In the case of a wall-inclination of a little less than 75 for a

vertical initial eylinder-orientation and of a little tess than 600 foi an

horizontal wall-inclination, the angular velocity , and the horizontal

separation D2  respectively reach a minimum and a maximum at the same time.

Thus, the particle will not collide with the surface, which is of a great signifi-
cance.
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Here one should note the aerosol specificity as compared to the

motion within our liquid. Since both the mass and the moment of inertia of

a cyiindrical particle are proportional to b 2 , ;t comes out that the thinner

is the particle the greater are its translational (in I/sec) and rotational

velocities attained after a certain time. However, if one returns to dimen-

sional quantities, one observes that the overall particle drifts in aerosol

and liquid systems,as caused by a plan ar wall, will still be the same. For an

aerosol system, the influence of the wall is manifested already at distances

of about 50 1 (2).

Motion within a Flow; Two-dimensional Situation

Couette Flow

From Fig. 20 it can be seen that the behaviour of our cylinder as it rotates

in the gradient flow is essentially the same as that far from a wall ("Depo-

sition from Flow", Final Report DAERO-76-G-14, 1978,and Gallily and Eisner,

J. Colloid Interface Sci. 68, 320-37 (1979)). The wall effect is shown In the

decrease of the second maximum of the vertical velocity V, as the particle

nears the horizontal plane (curve A); the effect is, however, over-shadowed in

the angular velocity B curve. It is noteworthy that the (rotating) particle spends

more than 85% of its time in an horizontal orientation.

Poiseuille Flow

The behaviour in this case is essentially the same as that within a Couette

flow.

A

A 7
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General Conclusions

i. For cylindrical particles there is a pronounced wall effect which

may be of a great importance in a motion within small cavities like those

of the human lung, and near small aerosol collecting obstacles.

ii. The sedimentation efficiency of the particles on an Inclined or

horizontal plane is decreased due to the effect.

iii. The surface concentration of the particles' deposit on an inclined plane

has a greater dispersion as compared to that for which the wall does not

exert any influence.

iv. The collision of the particles with a vertical wall Is very small due

to their "repulsion" from it; only particles with 0 < 0 -! r/2 will have

a slight chance of colliding.

Finally, extending the results to motion near curved convex surfaces, one can

assume that the smaller is the angle between the tangent plane and the

surface, Lhe greater is the (still medium) collision efficienc-y which is

defined as the ratio between the number of settled particles to the number that

would have sedimented had all trajectories been vertical.

V. Applications

The slender body method of calculating the fluiddynamic force and torque

on the particles seems to be more useful than that based on Oberbeck's (4)

and Jeffery's (5) equations since it does not depend on any limiting

assumptions concerning the flow in which the particle is immersed. For example,

any numerically (computer) solved field of flow can be introduced Into the

slender body equations where It is necessary to know the undisturbed velocity

Ilmm i i -
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(Eq. :T ) at the middle of each of the N divided cylinder's sections.

This has been performed (with no wall effect,however) in a DFG (Germany)

supported study in calculations which checked quite satisfactorily with

experiments (13).

B. BROWNIAN DIFFUSION

I. Theoretical

1. Method

a. General

The diffusion of aerosol particles in air is generally controlled by a

Brownian, a turbulent or a mixed wechanism; near surfaces, where turbulence

subsides, it is dictated mainly by the first.

In the case of spherical particles, there has been already much study on

the numerous aspects of Brownian diffusion, but, very little has been

performed with regard to the process for the nonspherical counterparts. The

difficuity arises from the general non-isotropic nature of teh fluiddynamic

interaction between particles and medium which makes it necessary to consider

the spatial orientation and the rotation of the former.

A useful way of treating the problem is based on Brenner's formal structure (14)

in which one assumes a six-dimensional location-orientation hyperspace where

the general number concentration is given by the solution of the conser-

vat ion -equation

i.. -..
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-+ 7..+.... 2 L j [2 7. t- 0

Here , the translational , 7 , and rotational, " , fluxes are

respectively expressed (for axi-symmetrical particles, for example) by

IT CIL

and 
N

OT 2-.T C + '

For the physical applications of diffusion,where one needs to have ensemble

orientation-averaged quantities, it Is useful to define a total concentra-

tion c, translational flux - , averaged translational velocity <%L> and a

-t
diffusion diadic V: pr by

C .- a r

[29]

The total, orientation-averaged translational diffusion diedic VDT Is the

operational parameter to be plugged into the (translational) diffusion equation

of the aerosol ensemble. It Is dependent on the orientation distribution

function of the particles which is the most Important property of the

ensemble.

A
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In Brenners' (formal) treatment (14) and for an axi-synunetric particles' case,

one has instead of [27]

4+ + * '=[30]

where ~ + CLS ,and

C r e ,)= C (r ) (-e ,+ [311

In that case, one obtains for the orientation distribution density f the

governing equation

-a (z++A4 32)

which takes, for example, the form

_4, 'a 6__ _ [33]
Pr __i - -i-aOfi

where e,( are the polar angles and the rotational PecVlt number "Pe

is defined by

Pe [34]

For a quiet medium, the orientation density f has been calculated to be

TcA
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:4rr

Tr

For a flowing medium, the convective-rotation equation of axisymmetric

particles for example, viz.

- . 4r [36J

has been (firstly) solved by Peterlin (16) when the Couette conditions and the

pertinent Jeffery equations for ej (5) hold. The solution shows f to be a sole

function of the particle Peclet number

b. The Aerosol Specificity

From the above it can be observed that the (crucial) density function f

for axi-symmetric particles depends on D., and W . The latter have been

calculated in the case of a liquid suspension by classical fluiddynamic

methods (17,5); however, in the case of aerosol systems this is not adequate.

The reason for the inadequacy stems out of the fact that in the very Instance

of the only (small) aerosol particles which show a pronounced Brownian motion,

the medium cannot be considered as continuous any more. Thus, both the rotational
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diffusion coefficient M.: and the gradient-rotational velocity of the

particles have to be calculated from first principles by statistical-mechanics

means.

c. Immediate Aim

It was intended to study (for the first time) the rotational diffusion

coefficient of cylindrical or discoidal aerosol particles which form a good

geometrical model for many systems. The task has been accomplished,as reported

now and also published under the title "On the Stochastic Nature of the Motion

of Nonspherical Aerosol Particles III. The Rotational Diffusion Diadic and

Applications"by Alfred D. Eisner and Isaiah Gallily, J. Colloid Interface

Sci. 81, 214-33 (1981).

The gradient rotational velocity of the particles in a simple (though not

limiting) shear flow has been calculated too and presented in the publication:

"On the Stochastic Motion of Nonspherical Aerosol Particles. IV. Gradient

Convective Rotational Velocities in a Simple Shear Flow" by Alfred D. Eisner

and Isaiah Galily, J. Colloid Interface Sci. 1982 (in press), which is not

included here.

Finally, a third (summarizing) article is in preparation.

d. Medium, Particle, and General Governing Equations

Out of the generalized Einstein equation

1 IDfie (c) r37]

It
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between the translational, rotational or coupling particle mobility and the

respective diffusion tensors, and from the relation to the operating

torque L F exemplified by

L.., - MF..) [383

one notes that the core of the calculations is imbedded In the evaluation of

L .

The (considered) particles, assumed to be much smaller than the mean free path

of the gas molecules ( K >, > ± , ,are taken to translate

with a linear uniform velocity U with respect to an Inertial system

of coordinates O (Fig. 22), and rotate with a uniform velocity w with

respect to the center of mass M in a quiet medium devoid of external torques.

Thus, the source of L. is supposed to be only the stochastic bombardment

of the gas molecules.

For our medium (and structureless molecules), the distribution of the molecu-

lar velocities is Maxwellian, i.e.

N, eb, (t~v~tdv)= N4(h/wr)O..p E-6(v,~ v( 'jddv?)rk.'" U39J

where (1),(2),(3) respectively stand for X21  ,2 and h= i'/zk ".

Concerning the Inertial system O1 itself, there is no preferred position of

Its placement in space since the latter is assumed (by the above) to be

Isotropic.

I.I
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Z2

01

R

y2

Fig. 22. The external system of
coordinates 0 2

The particles' surface condltion!7 )dopted in our analysis are those

of Maxwell (18) according to whom one has to distinguish between a diffusely

reflected fraction oA of gas molecules with a Maxwelllan distribution

conforming to the surface temperature 'T, and a specularly reflected

fraction (g )for which

2- - v-. [40]. .,.-------
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From the point of view of an observer at 02, the velocity of a gas

molecule relative to the body-point 01 (Fig. 22) is

V. =4 J= -u 1

Thus, the number of these molecules of velocity between v. to v-. Iv.

hitting an elemental surface oli around that point in a unit of time

is

C,' dXv1 d, - (k/Tr)V2 c. ,,R- U).(.

exr[- k Iv! 1
3 VO2. [42

the momentum transfer at that time is

-n( , - c. x R - u. A ., CL,, 9,< , [431

and the torque imparted to the particles in the ) direction

Is

(i..- h')<'" - N ( V'./1r)2f IVQ.(Rtx (ve I OJX U ))

which Is a typical governing equation.
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The contribution of the reflected molecules is expressed in a similar

fashion but with the exchange of h and N of the velocity distribution

of the incoming molecules with K. and N of the diffusely reflected

ones as determined by the requirement that (for a steady situation):

i. The net flux of molecules at each particles surface element is zero;

ii. The net total energy transport at that element is zero, too.

The total torque imparted to the rotating-translating particle can be put as

(i-'[(L~ p.it

+. . rL = k _=) [ )V. CL, ), )] , [4r]

2. Calculational Procedure

a. A Spherical Particle

This has been chosen as a test case for the proposed method. Taking here

the "natural" coordinates system +r t. and +# '(Fig. 23), one has

R = (i" - Cos L L + si+-a s.i,¢I + cos.a k) , [46)

• = I1.', o$ . si. e+, j ... cos k , C47)

and

V(2 (481
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where A, the transformation matrix is

( i- a * " I"Cos 0
co S O CWs cos Smv ~ -~l [49)

-ir

01,U

102 -'Y

Fig. 23. The spherical coordinate system.

Due to the space isotropy, it is possible to write

Cj Ci[50)

and

ti L~ sii'j +. co k) [511
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A sample procedural way for calculating L L. - ) for W=

is given here as follows:

i. The integrand

r rsS i 8 ,Cs 0 , O..2, c.;120 V

+ 2. 00U M COSS s f." 
t521

ii. Integration boundaries

. 0 ard so as -P t

1 -V, -5UM3C1s [

which gives

_~ ~~ U C*, =LU e

Also, -d Lve V -
[553

iii. Final equation

2tr iT U.co

0 * " ---

-(, + " v;,.; a+ V1 Is'd# [63

Robb. - ,= ') O1 .,,



- 45

where I- the velocity cr~i;ponents transformation Jacobian is i

b. A Cyl indrical or D-iscoidal Part ict;

Now. the "natural'' system of coordinates is i~ t, and t (fiy.24).

z

x

Fig. 24.. The cylindrical system of coordinates.

Thus

C= S + 4 * [57]

-t IrO [58)

't # ~s~ - ,4 -(,S [59]

ts [601
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and

13 [ ? 61]

where B, the transformation matrix, is

As S 0

0 WS 'o[6 2.

0 0 1

Placing the 02 (external) coordinate system (Fig. 24) so that the polar

axis of the particle will coincide with It , and assuming an arbitrarily

directed angular velocity a = c , L + coW + C4 k ,

one can carry out a piecewise calculation of the total torque Imparted to

the envelope and each base of the particle. By order of magnitude conside-

rations (APPENDIX 2), it can be shown that the ordinary translational

velocity of an aerosol particle, Um , is negligible with respect to V,

and CO x R (Eq. [44) ). Consequently, it becomes possible to

express the integrand of [443 for the molecules which hit the

particles envelope, for example, as

i A
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R x. (cs'e v/ +i x '] -4, -vcvi x R 9 v/n , -0 ~

+ C, . j&' C.)$ , S pCZ-- S + C.) I 'Cog¢ 4; p S 4, ' q ,, + Cjec'OS

?,tcos P) 1,3 + ( C'si ca 0,, ~ ) s'/2 c,)(.

.12.[63.

The integration limits in the (governing equation) [44] are set to be

0+C- C 1 = v2. + Wo, .4S I - CO, Z 4COS 0#S P whCIch Ilead s to

_. '3_ vS " g - C I c- - O , 7 . I'-"

and o -v= a . -. ,

Finallly, in this case, the torque can be written in the form

d-! c V-4d v,5 [64]

where the velocity limits are given by the above, and d% aesto b

(LF .= .. W' (/r/ffr~

0 1. L ,e L
2.~c~ad/ [4
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For the case of k'-Ci4iwhich almost always occurs (APPENDIX 2), and

when utilizing certain integral values (APPENDIX 2), one obtains in the

typical procedure shown here that

2.W " A 4 K - -

+ a COM I'l -~IL, oa92 wO-0S ,

where 0( ... ) denotes higher powers of W which can be

neglected (APPENDIX 2).

11. Results

1. The Spherical Particle

The total torque on the spherical particle for Cj= ejW and

is found to be

(L~ * ()co N ir4 +~ k Uq~ [66J

(L'
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which, for the common case of W/2.LUM u 4 I (APPENDIX 2),turns

to

(L) = 0( (4,3) Ir/ ) /o N n v . [673

Eq. [67] is exactly similar to that obtained by Epstein (18) in a

different way and so one may certainly have confidence in the calculational

method.

It should be remarked that in the above case

(tot) -tt

(L .•) = - (L F• 0 [681

as can be easily seen.

For the arbitrary Uri direction, it is found that

(L< ) o(Tr/) co N -m r

x ( + "P,), U u( 69]
3 )

which becomes Identical with [66] as W = 0

2. The Cylindrical or Discoidal Particle

The total torque on these particles is

I3
I II -
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(L. L Z-/ L3 + -L +

+~~~~TY TP9 lco
3i )'h ,) 3 L2

+ 35

which can be written to a very good approximation (APPENDIX 2) as

-to+

+ CA - r- )]i +7'

i8 2.1 -

where = /L

Similarly to Eq. 71 ,it is possible to get an equation for the torques

imparted to the rotating aerosol particle along its other axes; these come

out to be

(L " ( tt - C72]

and

(L , C)('t. - 3 [73)

Thus, the (vector) torque can be written as

• -

, - - *'Is
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L - A w- L 74 "

where rL =M is a symmetric diadic whose elgenvectors lie

along the symmetry axes of the particle. A similar deduction can be

reached from Landads and Lifshitz's (19) reasoning based on irrever-

sible thermodynamics principles.

a. The rotational diffusion coefficient

From Eq. [38J one has that

L La ) f -I r [751D =

which gives, if one uses the kinetic theory relationship ?I(-!)'- (.It)

.itR _n.) [76]

where lv - L/f

Eq. [76] should be compared to that of Edwards (20)

V 7 - -"(77)

Dh.T -L Lw I (/3)(
19 +
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as is presented in Fig. 25.

Low

Fig. 25. The rotational diffusion coefficient of Cylindrlcal

particles in air. A1,Bi,,Cl values of this study;

A,B,C - Edwards' values.

111. Discussion

It must be re-noted here that our calculations apply to aerosol

particles whose dimension, in any direction, Is much smaller than the

mean-free path I. of the gas molecules (-0.069 *8' at normal conditions).

and to a quiet medium. For larger particles within a flow, one has to

recur to the Boltzmann's ntegro-differentcl equation of the velocity

distribution whose (closed form) solution Is not known as yet.
meanfre pat 1 f te ga moecues (0.09 ~.W1 t nrma conitins)

and o aqult meium Fo larer artcleswitin flo, oe hs t

recurI I to the Botmn' ner-ifrniIeuto ftevlct
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The results of D. themselves show that:

i. The values of the coefficient are of the order of 106-107 sec - ,

which makes the typical relixation times for Brownian rotation phenomenta,

-, = / - negligibly small.

ii. The calculated values are greater by a factor of about 30

than those obtained according to Edwards in classical fluiddynamic means, which

is reflected by the rotational Peclet number assigned to a diffusional con-

dition of orientable particles and, hence, by the ortentational distribution

density.

IV. Applications

As an example for the use of .L in a real problem, it is possible

to take the diffusional deposition of cylindrical aerosol particles on an

infinite plannar surface and in a quiet medium.

a. General

Employing the cartesian coordinate system shown in Fig. 26, one can

write down Eq. 127]in the form

=2 S-: . + ( ,-j,+ ..D L+( 3.1,--

29 2. +0 + GOS09 fac, ,

+, 1 3) M S, t 40'n ; ;' C-OS to " -+ -EcO , e " .,

- 3)(" b X.. 6,, S, as ,.

.. ..4 ... V ..
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X3

X2

Fig. 26. The cartesian system of coordinates used in the

diffusion analysis.

where D, are the translational diffusion coefficients of the

particle parallel and perpendicular to Its polar axis, respectively. Now,

if it is assumed that particles' orientation density Is Independent of

their location viz.

6~ Or t0 = C X'. 3 5 XS j(e* 1) 0 ( 79)

then, instead of C78] one obtains the two equations*

whose solution Is given in Eq. [35J,and
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- .a.-+ c.os") 0 l ]F

X12 +~.~ D. i I

ax , S " +

+ 7 9C-1so Cos# C~

At this stage, the orientation averaging being defined by

4- (0, , Sine le 01

one reaches the final equation

21Tr

'P4 1- 9 do 010

Cti4'e )ZD - + C + L

2, 2c + C+2

since the mixed terms D'c / x a Xc drop out.

b. Specific

In the specific, above diffusion case where it is taken that concen-

tration gradients exist only along x&

V C 83
i TI

........
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where the orientation-averaged translational diffusion coefficient ot (t)

is

= + ( n,, - e) <s t.e",.> [84]

Peforming the orientation-averaging of the function S, 'ie S' £) one

gets that

-t .3

ab(t)= Z>L + ( > 1[1- ex p( ",j) [85]

Concerning the solution of (83] , it is advantageous to define a (new)

vriable P by (21)

t

P = fozt') d*' (86]
0

whereby one obtains that (for c : c. At t = o and cs 0 aet

x.2=o and t> 0 )

= Co C X (87]
0

being the Error Function.

The total number of deposited particles Mtafter time t will be then (22)



-57-

M,~' n-

c. Results

The number M vs. time is presented in Fig. 27 for the two

cases:

A. When tD, and +D. are calculated according to classical continuum

theory, viz.

-~~~~2 w IAL UI/e-N (ip-C>)B9

and

SZ., (90]

and Edwards' value of = V- L sasue.

B. When these coefficients are given by Dahnekels molecular re~lme equations,viz.

and

t* -. I T KY [92)

and our value of 'D.L Is taken.



Also, M4_ is calcuaited for case C of a volumetrically equivalent

spherical particle.

From Fig. 27 it is seen that the values of case B are significantly higher

than those of case A but that those of case C are higher still, which is

resonable if one remembers that diffusional particle mobility is a property of the

surface of the latter and that the surface of the volumetrically equivalent

sphere is the smallest of all forms.

It should be noted that in the still-medium diffusion discussed here

is essentially independent of the (very large) value of eb(t) for all experimen-

tal times of interest. The value of r will matter in difusion in flow

where the rotational Peclet number does

count.

01;

0-0-

wO 7

44

0.04

'0 30 40 s

t *,#

Fig. 27. The total number M vs. t.

A, case AjB, case B C , case C esttel above.

f' 0. 00 L O).! T= 1qS6 K ~ 841'.22Xl x1-Poise,

L 6.6 9 10- c T
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C. APPENDIX 1,2

1. Appendix I

a. Green functions

Generally, expressing thL. disturbance due to the slender body

by (Fig. 1)

rC 1

U ) L

(:

where 4 (r) is the drag force per unit surface and V .

is the double-layer potential (which can be neglected), and using the

radius vector r (FIg.l) to define position, one can expand u -

according to

U. Lkr 5

where ? ( 'P ,) is the radial vector of the point P' ( v-"

starting from its vertical projection on the axis. Then, one can write

t I ..

-i -t

where

ss. Te, I

r A ,t- o , ~ l/U1,(r ")v.+ [C2
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sinceCr)u ' *C-,*

b. Definitions.

CC'Os a .~C '719 C2=ICS 1n0. C I CS 49 C3 ~ C3

Tr I < 3.2 SIVI K l~ 2 - 132 C4S 19 iT33  K 33

32 12. 13 Cs"

09 0

1,C0626 =-sn C-OS a, I -6?', 1 0.
I, ) 1. -. 2

__,ohm
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where 6 is the angle beL.L,een x and x,

4 Is' r

,J

r- ri

c. Elaborate procedure

This procedure is based on Eq. [20j. Employing the transformations:

one defines

F( .'= (--' , i- , (' = C-e s- ( rv v ', = O,

** - 9-- . ) 7 -

{ ' f rV.) "s

rI

+ ,.s
w)

0. Sr
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and writes [17] and [183 in terms of these transformations.

Thus, (x (and') Eq. [20] is expressed as

where L N , ,

m -(Z7-~..(-,')fo -' , 2r~i N (,r') +A!(2r, r) fr~'

2. Appendix 2

a. Order of magnitude of '.UM

Taking a typical case of LUM =0 ) and calculating h to be

5%. A7 ) 0 sec cw? I for T 298. 1* 'K and air molecules,

one obtains that

IuM = 0 (&') , which is much smaller

than unity.

b. Order of magnitude of I'/' r, ca

Taking L = 0. I x C" m , t = O.OO7 S'Y C ". = C- -

and air molecules at T= 2l.' 16 K I = 184.22x XO-l.oistJ7
= 6.0

and estimating W. by the law of equipartition of energy, viz.

' 2 fc.3)

one gets that

Ma-i
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and

d. Integrals

S e---

9 e/CI

-Of

I 2ce S'< 0 0

o* 2.* *.1r
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D. NOMENCLATURE

a constant of systems geometry; half-width of flow channel

A,B - transformation matrices defined in text

b- characteristic epuivalent cross-se'tion raaius of (slender) particle

Sr - local equiva!ent cross-section radiusr

B ' , B., B. constants

c - particles' total number concentration, o - initial value

C - vector, defined in text

D - distance, defined in Fig. 2

D 'D D - translational, rotational and coupling diffusion diadics,

respectiveIy

D, - rotational diffusion coefficient around a mid-diametert

D ' , - translational diffusion diadic components parallel and perpendicular to

polar axis, respectively

D. ,D2 - distances, defined in Fig.4

e - unit vector along symmetry axis of particle

f - orientation distribution density

t: ('") - Stokeslets' distribution density; fj -doublets' distribution

density etc.

-j (r" - drag force per unit area of particle

Fe  - external force; F. - fluiddynamic force

- acceleration of gravity

h - particle-wall distance; also, m/2kT

I , 1, - moment of inertia of particle

I , I', I" diadics, defined in text

I, - interqrand, defined in text

' * - rotational flux of axi-symetric particles

j particles' flux

Iil - transformation Jacobian

k - Boltzmans constant

k, ,kX- constants

K - Knudsen's number

I - semi-length of slender particle

- mean free- path of ges molecules

L - length of cylindrical particle

t - vlprn1 trn,,. ...... I ljddvnamlr tnrnuA
N
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m - mass of particle

Mt  - total number of deposited particles in time t

M - diadic, defined in text

H - mobility diadic

71 - unit vector normal to dS

n, n - running indices

it= - number of molecules hitting unit surface per unit time

- density of Maxwell's velocity distributien

N - average number of gas molecules

P - defined in text

'f. - rotational Pecl * number

rPef - particle rotational Peclet number

- associated Legendre function

rc - typical length of particle

r r'r" r - distances defined in Fig. 1 and 2

r - location radius vector ,- rad'ui o+ sfIntre

- radius vector from geometric center of particle to a point on its

surface.

S - particles surface; dS - surface element

t - time

T - Temperature

& Cr -,, - etc.- Green functions associated with

UMu - translational velocity of particle

v (r) - disturbance velocity of slender body

v2 V, - velocities of gas molecules in the 0,. system and relative to dS

respectively;v' - velocity of reflected molecules.

V - translational velocity of slender body

14 (r) - double-layer potential

X , X' - position distances on body's axis (Fig.l)

X, ,X, X3- coordinates
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Greek letLtrs

traction of gas molecules reflected diffur.e~y

-running inc''ces

- Kronickers' delta

-Levi-Ci vita permulat ion terisor

- iuid'5 vorticity

-angle, defined in text

t4-polar angles

A - vector, defined in text

1- dynamic viscosity of gas

TT - diadic, defined in text

- position vector, defined in Fig. I

- gas density , cy ! 1-de vs raclis

~-particles' density

6-number- concentration in location-orientation hyper-space;

a!so, [f~~ L '~
*-orientation (pseudo)vector

-Error Function

VI - angle between U,., and w

W - rotational velocity of particle.; wo,, co2 , wo- -components

Sz. M

Subscripts

1 - center of mass

o - initial value

c - cylinder's envelope

Superscripts

(in) - hitting molecules

Ot - t,r,c

(r) - reflected molecules

(tot) - total
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